webinar register page

Alessio Figalli: Generic regularity in obstacle problems
The classical obstacle problem consists of finding the equilibrium position of an elastic membrane whose boundary is held fixed and which is constrained to lie above a given obstacle. By classical results of Caffarelli, the free boundary is $C^\infty$ outside a set of singular points. Explicit examples show that the singular set could be in general $(n-1)$-dimensional ---that is, as large as the regular set. In a recent paper with Ros-Oton and Serra we show that, generically, the singular set has zero $\mathcal H^{n-4}$ measure (in particular, it has codimension 3 inside the free boundary), solving a conjecture of Schaeffer in dimension $n \leq 4$. The aim of this talk is to give an overview of these results.

Jul 2, 2020 04:00 PM in Rome

Webinar logo
Webinar is over, you cannot register now. If you have any questions, please contact Webinar host: Massimiliano Ritossa.